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Homology

Algebraic Topology: Distinguishing topological spaces via algebraic invariants

Homology: For each dimension d � 0 assigns to a topological space a vector space

X 7! Hd(X )

and to a continuous map a linear map

(f : X ! Y ) 7! (Hd(f ) : Hd(X )! Hd(Y ))

Definition

�d(X ) = dimHd(X ) is called the d-th Betti number of X .
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What homology can distinguish I
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What homology can distinguish II
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What homology can distinguish III
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What homology cannot distinguish I
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What homology cannot distinguish II
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Homology in a nutshell

�d(X ) is the number of d-dimensional holes in X .
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Geometric Simplicial Complexes I

Definition

A geometric n-simplex is the convex hull of n + 1 a�nely independent points in Rm.

If convX is a simplex and Y ✓ X , then convY is called a face of convX .
A geometric simplicial complex is a finite set K of simplices such that
I if � 2 K and ⌧ is a face of K , then ⌧ 2 K , and
I if �, ⌧ 2 K and � \ ⌧ 6= ;, then � \ ⌧ is a face of � and of ⌧ .
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Boundary matrix

Definition

Let K = {�1, . . . ,�m} be a simplicial complex. We define its boundary matrix

D = (di ,j) as

di ,j =

(
1 if �i is a boundary of �j with dim�i = dim�j � 1,

0 otherwise.

Example
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Matrix reduction I

Definition

Let v = (v1, . . . , vm)
T be a column vector. We define

pivot v = max{i 2 {1, . . . ,m} | vi 6= 0}.

If M is a matrix, we write mj for its j-th column and colsM for the set of all its
non-zero columns.
We write pivotsM = {pivotmj | mj 2 colsM}.
We say that M is reduced if pivotmj = mk implies mj = mk for all mj ,mk 2 colsM.

Example

Reduced:

Not reduced:
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Matrix reduction II

Definition

Let M be a matrix. We say that (R ,V ) is a reduction of M if R is reduced, V is
upper-triangular and invertible and we have R = MV .

Input: M

Output: (R ,V ) reduction of M
R  M

V  I

while 9i < j with pivotRi = pivotRj do

Rj  Rj + Ri

Vj  Vj + Vi

end while

return (R ,V )
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Matrix reduction III
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Computing homology I

Theorem

Let K = {�1, . . . ,�m} be a simplicial complex with boundary matrix D. Let (R ,V ) be
a reduction of D. Then

�d(K ) = #{i | Ri = 0, i /2 pivotsR , dim�i = d}.

Example
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Computing homology II

Topological space

Simplicial complex

Betti numbers

Triangulation

Matrix reduction
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Manifold recovery I
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Manifold recovery II

Theorem (Niyogi, Smale, Weinberger)

Let M ✓ Rk
be a manifold and P ✓ M. There exists c(M) > 0 such that for every

c(M) > � > 0 with M ✓
S

x2P B�(x) we have

H⇤(M) ⇠= H⇤

 
[

x2P
B�(x)

!

How do we choose �?

We don’t!
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Complexes from balls I
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Complexes from Balls II

Definition

Let P ✓ Rk be a finite set. For t > 0 define the Čech complex

Čecht(P) = {Q ✓ P |
\

x2Q
Bt(x) 6= ;}.

Note: Čecht(P) ✓ Čechu(P) whenever t  u.

Theorem (Nerve Theorem)

Let P ✓ Rk
be a finite set and t � 0. If

T
x2Q Bt(x) can be deformed to a point for all

Q ✓ P , then

H⇤

 
[

x2P
Bt(x)

!
⇠= H⇤(Čecht(P))
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Rips complexes

Definition

Let P ✓ Rk be a finite set. For t � 0 we define the Rips complex

Ripst(P) = {Q ✓ P | sup
x ,y2Q

d(x , y)  t}.

Note: Ripst(P) ✓ Ripsu(P) whenever t  u.

Theorem

There exists ✓ > 0 such that for all finite sets P ✓ Rk
and t > 0 we have

Ripst ✓ Čech✓t(P)

and

Čecht ✓ Rips✓t(P)
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Homology for Data
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Barcodes

Definition

A family of finite-dimensional vector spaces Vi , i = 1, . . . , n with linear maps
Vi ! Vi+1 for each i is called a persistence module.

Theorem

Let

V1 V2 . . . Vn�1 Vn

be a persistence module. Then there exists a unique family of intervals (Ik)k2K with

Ik ✓ {1, . . . , n} such that

dimVi = #{k 2 K | i 2 Ik}

and

rank(Vi ! Vj) = #{k 2 K | i , j 2 Ik}
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Persistent homology

Definition

Let K be a simplicial complex. A filtration of K is a family of simplicial complexes
K1, . . . ,Kn such that Kn = K and Ki ✓ Ki+1 for all n.

We call

H⇤(K1) H⇤(K2) . . . H⇤(Kn�1) H⇤(Kn)

the persistent homology of the filtration.
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Computing persistent homology

Theorem (Barannikov, Carlsson & Zomorodian, Edelsbrunner et al.)

Let K = {�1, . . . ,�n} be a simplicial complex such that Ki = {�1, . . . ,�i} is a

subcomplex.

Let D be the corresponding boundary matrix and (R ,V ) a reduction of D.

Then

{[i ,1) | Ri = 0, i /2 pivotsR} [ {[i , j) | i = pivotRj}

is the barcode of

H⇤(K1) H⇤(K2) . . . H⇤(Kn�1) H⇤(Kn)
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Persistent homology pipeline

Data

Filtration of Complexes

Persistence Module

Barcode

Rips/Čech/Delaunay/...

Homology

Interval Decomposition
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Stability I

Definition

Let P ,Q ✓ Rk . We define their Hausdor↵ distance as

dH(P ,Q) = max

(
sup
p2P

inf
q2Q

d(p, q), sup
q2Q

inf
p2P

d(p, q)

)

Example

Maximilian Schmahl Python Course on Topological Methods in Data Analysis - Day 2 29/ 36



Stability I

Definition

Let P ,Q ✓ Rk . We define their Hausdor↵ distance as

dH(P ,Q) = max

(
sup
p2P

inf
q2Q

d(p, q), sup
q2Q

inf
p2P

d(p, q)

)

Example

Maximilian Schmahl Python Course on Topological Methods in Data Analysis - Day 2 29/ 36

00



Stability II

Definition

Let B = (I↵)↵2A and C = (J�)�2B be barcodes.
A �-matching between them consists of subsets A0 ✓ A, B 0 ✓ B and a bijection
f : A0 ! B

0 such that:

I If ↵ /2 A
0, � /2 B

0, then length(I↵), length(J�) < �.
I If f (I↵) = J� , then the endpoints of I↵ and J� are within � of eachother.

We define the bottleneck distance as

db(B ,C ) = inf{� > 0 | there exists a �-matching between B and C}.

Example
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Stability III

Theorem (Cohen-Steiner et al.)

Let P ,Q ✓ Rk
be finite subsets and let B(P) and B(Q) be the barcodes of the

persistent homology of their Rips filtrations. Then

db(B(P),B(Q))  dH(P ,Q).
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Persistence diagrams

Definition

If B = (I↵)↵2A is a barcode, we define its persistence diagram as

dgm(B) = ((inf I↵, sup I↵))↵2A ✓ R2.
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Ripser

C++ library by Ulrich Bauer to compute barcodes of Rips filtrations

Also implemented in scikit-tda:

from ripser import ripser
from persim import plot diagrams

# Compute the persistence diagram of a Rips filtration

# data is numpy array of points in euclidean space or a distance matrix

dgm = ripser(data, maxdim = 1, thresh = inf, distance matrix = False)

# Plot the persistence diagram

plot diagrams(dgm, show = False)
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What can we do with persistent homology?

I Infer something about the shape of a data set (e.g. Cosmic Microwave
Background, Edelsbrunner et al.)

I Infer something about the complexity of a data set (e.g. lung disease detection,
Brodzki et al.)

I Use it as an additional layer in machine learning methods

Maximilian Schmahl Python Course on Topological Methods in Data Analysis - Day 2 36/ 36



What can we do with persistent homology?

I Infer something about the shape of a data set (e.g. Cosmic Microwave
Background, Edelsbrunner et al.)

I Infer something about the complexity of a data set (e.g. lung disease detection,
Brodzki et al.)

I Use it as an additional layer in machine learning methods

Maximilian Schmahl Python Course on Topological Methods in Data Analysis - Day 2 36/ 36



What can we do with persistent homology?

I Infer something about the shape of a data set (e.g. Cosmic Microwave
Background, Edelsbrunner et al.)

I Infer something about the complexity of a data set (e.g. lung disease detection,
Brodzki et al.)

I Use it as an additional layer in machine learning methods

Maximilian Schmahl Python Course on Topological Methods in Data Analysis - Day 2 36/ 36



What can we do with persistent homology?

I Infer something about the shape of a data set (e.g. Cosmic Microwave
Background, Edelsbrunner et al.)

I Infer something about the complexity of a data set (e.g. lung disease detection,
Brodzki et al.)

I Use it as an additional layer in machine learning methods

Maximilian Schmahl Python Course on Topological Methods in Data Analysis - Day 2 36/ 36

Ä er


