

Michael Bleher

Institute for Mathematics, Heidelberg University

COMPUTATIONAL TOPOLOGY - NEURAL NETWORKS MEETING, SEVILLA 2023

TOPOLOGICAL SIGNATURES OF CONVERGENCE IN VIRAL EVOLUTION

based on arXiv:2106.07292 arXiv:2207.03394

Joint w/

Andreas Ott, Maximilian Neumann (Karlsruhe) Lukas Hahn (Heidelberg) Juan Patiño-Galindo (Mount Sinai) Mathieu Carrière (Inria Sophia-Antopolis) Raul Rabadan (Columbia) Ulrich Bauer (Munich) Samuel Braun, Holger Obermaier, Mehmet Soysal, René Caspart (Karlsruhe)

Author: YK Times, Wikimedia Commons (CC BY-SA 3.0)

Viral Genome

Sequence of nucleotides A, C, T, G. Encodes instructions for host cell.

Viral Life Cycle

- 1. Virus binds to host cell
- 2. Viral genome enters cell & nucleus
- 3. Replication and Transcription of viral RNA
- 4. Translation (production of viral proteins)
- 5. & 6. Assembly
 - 7. Release

Viral Transmission

• not every mutation is beneficial

Viral Transmission

- not every mutation is beneficial
- mutations that spread widely are not necessarily beneficial (founder effects)

Viral Transmission

- not every mutation is beneficial
- mutations that spread widely are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on

Viral Transmission

- not every mutation is beneficial
- mutations that spread widely are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to *appear repeatedly* (and may then spread more widely)

Recurrence is a hallmark of adaptation

Monitor evolution of virus and determine influence of (single or groups of) mutations.

Construct phylogenetic tree.

Basic Idea:

Hamming distance = Tree distance

Minimum spanning tree reconstructs ancestral relations

Monitor evolution of virus and determine influence of (single or groups of) mutations.

Construct phylogenetic network.

Basic Idea:

Hamming distance \neq Tree distance

Minimum spanning tree reconstructs ancestral relations, but is not unique.

Reassortment

Some viruses have disconnected genome, e.g. Flu (HxNy). Co-infection can lead to "reassortment" during assembly.

Reassortment

Some viruses have disconnected genome, e.g. Flu (HxNy). Co-infection can lead to "reassortment" during assembly.

Recombination

Replication apparatus can switch template. Co-infection can lead to recombination into a hybrid genome.

Reassortment

Some viruses have disconnected genome, e.g. Flu (HxNy). Co-infection can lead to "reassortment" during assembly.

Recombination

Replication apparatus can switch template. Co-infection can lead to recombination into a hybrid genome.

Convergence / Homoplasy

independent emergence of similar features. example: evolution of flight (mammals, insects, bats)

Reassortment

Some viruses have disconnected genome, e.g. Flu (HxNy). Co-infection can lead to "reassortment" during assembly.

Recombination

Replication apparatus can switch template. Co-infection can lead to recombination into a hybrid genome.

Convergence / Homoplasy

independent emergence of similar features. example: evolution of flight (mammals, insects, bats)

\implies cycles in phylogenetic network at different scales.

Persistent Homology

Consider genomic data with Hamming distance as finite metric space (X, d).

Construct Vietoris-Rips complex

 $VR_{\bullet}(X,d)$

Cycles at scale r correspond to 1d homology $H_1(VR_r(X, d))$.

Persistent Homology \simeq homology at all scales simultaneously $H_k(VR_{\bullet}(X, d))$.

NB: Calculation of homology is just matrix reduction. Highly optimized, e.g. Ripser (Uli Bauer).

Persistent Homology

Contractibility Lemma(s)

Rips, Gromov (60's & 80's)

(X,d) a δ -hyperbolic geodesic metric space \implies $\operatorname{VR}_t(X)$ is contractible, $t \ge 4\delta$.

Chan, Carlsson, Rabadan (2013)

If (X, d) is a tree, then $H_n(VR_{\bullet}(X, d)) = 0, n \ge 1$.

Bauer, Roll (2022)

(X, d) a δ -hyperbolic ν -geodesic finite metric space $\implies \exists$ discrete gradient collapse:

$$\operatorname{VR}_{s}(X) \searrow \operatorname{VR}_{t}(X) \searrow \{*\}, \ s > t \ge 4\delta + 2\nu$$

⇒ Persistent homology detects evolutionarily relevant phenomenona!

Persistent Homology of SARS-CoV-2

February 28th 2021 \sim 450,000 isolates $|H_1| \sim 2,600$

Noise or Feature?

Back-of-the-envelope

$$\begin{split} p &\simeq 2/30,000 \simeq \mathcal{O}(10^{-4}) \\ \# \text{unique sequences} &= \mathcal{O}(10^6) \end{split}$$

 \rightarrow expect $\mathcal{O}(10^2)$ cycles due to noise.

Noise or Feature?

Back-of-the-envelope

 $\begin{aligned} p &\simeq 2/30,000 \simeq \mathcal{O}(10^{-4}) \\ \# \text{unique sequences} &= \mathcal{O}(10^6) \end{aligned}$

 \rightarrow expect $\mathcal{O}(10^2)$ cycles due to noise.

Simulations of neutral evolution

- uniform mutation probability
- No fitness advantage
- No recombination
- \rightarrow expect 350-400

(worst case: $\leq 1,200$)

Which mutations give rise to homology?

use **exhaustive** cycle representatives

Which mutations give rise to homology?

use **exhaustive** cycle representatives

Which mutations give rise to homology?

use **exhaustive** cycle representatives

Exhaustive representatives of [1, x)-persistent classes have only edges of length 1: every edge corresponds to a single neucleotide variation (SNV).

[1, x)-persistent classes = "SNV-cycles".

 $\{\gamma\}$ – exhaustive representatives of SNV-cycles μ – mutation (xNy, e.g. D614G)

$$\label{eq:relation} \begin{split} \mathrm{tRI}(\mu) &:= \#\{\gamma \mid \mu \in \gamma\} \\ \text{(without double counting edges)} \end{split}$$

Proposition

 $tRI(\mu) = minimal number of independent occurences of <math>\mu$ in X.

\implies tRI is a measure for convergence.

Topological Recurrence of Spike mutations

Correlation with Host Adaptation

significant tRI (\geq 8) correlates with increase in binding affinity.

Comparison with Fitness Index

positive tRI correlates with positive fitness index (recently introduced by Bloom & Neher).

A Word on Multipersistence and a Computational Trick

Time series data, investigate 2d-persistence module.

Trick: Restriction to 1d submodule is equivalent to deformation of metric (generally leads to semi-metric, deformation violates triangle inequality)

tRI Curves

Evolutionary Dynamics and Epistasis

Acquisition date of significant tRI correlates with immune escape.

-> late 2020 evolutionary driving force shifts from transmission to immune escape

Evolutionary Dynamics and Epistasis

smoothed tRI growth rate along the genome shows surprising amount of time-dependence.

¹ Looks like measure of epistasis: influence of given mutational background on fitness of newly acquired mutations.

Summary

- Persistent homology detects evolutionarily relevant phenomena
- topological Recurrence Index (tRI) detects adaptive mutations (among others)
- tRI computations are efficient
- tRI curves might allow study of epistasis
- Differentiation of beneficial and adversarial mutations must rely on experiments, but persitent homology can tell us where to look

Summary

- Persistent homology detects evolutionarily relevant phenomena
- topological Recurrence Index (tRI) detects adaptive mutations (among others)
- tRI computations are efficient
- tRI curves might allow study of epistasis
- Differentiation of beneficial and adversarial mutations must rely on experiments, but persitent homology can tell us where to look

Thank you!