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A Brief Introduction to Genomics and Epidemiology

Author: YK Times, Wikimedia Commons (CC BY-SA 3.0)

Viral Genome

Sequence of nucleotides A, C, T, G.

Encodes instructions for host cell.

Viral Life Cycle

1. Virus binds to host cell

2. Viral genome enters cell & nucleus

3. Replication and Transcription of viral RNA

4. Translation (production of viral proteins)

5. & 6. Assembly

7. Release
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A Brief Introduction to Genomics and Epidemiology

Viral Transmission

• not every mutation is beneficial

• mutations that spread widely are not

necessarily beneficial (founder effects)

• not every beneficial mutation catches on

• BUT: beneficial mutations tend to appear

repeatedly (and may then spread more

widely)

Recurrence is a hallmark of adaptation
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Topology of Viral Evolution

Monitor evolution of virus and determine influence of

(single or groups of) mutations.

Construct phylogenetic tree.

Basic Idea:

Hamming distance = Tree distance

Minimum spanning tree reconstructs ancestral rela-

tions

, but is not unique.

Topology of Viral Evolution 4/19



Topological Signatures of Convergence in Viral Evolution Michael Bleher

Topology of Viral Evolution

Monitor evolution of virus and determine influence of

(single or groups of) mutations.

Construct phylogenetic network.

Basic Idea:

Hamming distance 6= Tree distance

Minimum spanning tree reconstructs ancestral rela-

tions, but is not unique.

Topology of Viral Evolution 4/19



Topological Signatures of Convergence in Viral Evolution Michael Bleher

Topology of Viral Evolution

Reassortment

Some viruses have disconnected genome, e.g. Flu (HxNy).

Co-infection can lead to ”reassortment” during assembly.

Recombination

Replication apparatus can switch template.

Co-infection can lead to recombination into a hybrid genome.

Convergence / Homoplasy

independent emergence of similar features.

example: evolution of flight (mammals, insects, bats)

=⇒ cycles in phylogenetic network at different scales.
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Persistent Homology

Consider genomic data with Ham-

ming distance as finite metric

space (X, d).

Construct Vietoris-Rips complex

V R•(X, d)

Cycles at scale r correspond to 1d

homology H1(V Rr(X, d)).

Persistent Homology ' homology at all scales simultaneously Hk(V R•(X, d)).

NB: Calculation of homology is just matrix reduction. Highly optimized, e.g. Ripser (Uli Bauer).
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Persistent Homology

Contractibility Lemma(s)

Rips, Gromov (60’s & 80’s)

(X, d) a δ-hyperbolic geodesic metric space =⇒ VRt(X) is contractible, t ≥ 4δ.

Chan, Carlsson, Rabadan (2013)

If (X, d) is a tree, then Hn(VR•(X, d) ) = 0, n ≥ 1.

Bauer, Roll (2022)

(X, d) a δ-hyperbolic ν-geodesic finite metric space =⇒ ∃ discrete gradient collapse:

VRs(X) ↘ VRt(X) ↘ {∗} , s > t ≥ 4δ + 2ν

=⇒ Persistent homology detects evolutionarily relevant phenomenona!
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Persistent Homology of SARS-CoV-2

February 28th 2021

∼ 450,000 isolates

|H1| ∼ 2, 600

Topological Signals in Evolution of SARS-CoV-2 8/19
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Noise or Feature?

Back-of-the-envelope

p ' 2/30, 000 ' O(10−4)
#unique sequences = O(106)

→ expect O(102) cycles due to noise.

Simulations of neutral evolution

• uniform mutation probability

• No fitness advantage

• No recombination

→ expect 350-400

(worst case: ≤ 1, 200)
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The topological Recurrence Index (tRI)

Which mutations give rise to homology?

use exhaustive cycle representatives

Exhaustive representatives of [1, x)-persistent classes have only edges of length 1: every edge
corresponds to a single neucleotide variation (SNV).

[1, x)-persistent classes = ”SNV-cycles”.
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The topological Recurrence Index (tRI)

{γ} – exhaustive representatives of SNV-cycles

µ – mutation (xNy, e.g. D614G)

tRI(µ) := #{γ | µ ∈ γ}
(without double counting edges)

Proposition

tRI(µ) = minimal number of independent occurences of µ in X .

=⇒ tRI is a measure for convergence.

The Topological Recurrence Index (tRI) 11/19
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Topological Recurrence of Spike mutations
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Correlation with Host Adaptation

significant tRI (≥ 8) correlates with increase in binding affinity.

The Topological Recurrence Index (tRI) 13/19



Topological Signatures of Convergence in Viral Evolution Michael Bleher

Comparison with Fitness Index

positive tRI correlates with positive

fitness index (recently introduced by

Bloom & Neher).

The Topological Recurrence Index (tRI) 14/19
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A Word on Multipersistence and a Computational Trick

Time series data, investigate 2d-persistence module.

Trick: Restriction to 1d submodule is equivalent to deformation of metric

(generally leads to semi-metric, deformation violates triangle inequality)

Time Series and tRI Curves 15/19
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tRI Curves
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Evolutionary Dynamics and Epistasis

Acquisition date of significant tRI correlates with immune escape.

-> late 2020 evolutionary driving force shifts from transmission to immune escape

Time Series and tRI Curves 17/19
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Evolutionary Dynamics and Epistasis
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Density of Spike gene amino acid variations newly flagged by significant tRI  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number of newly flagged SAAVs per window:

smoothed tRI growth rate along the genome shows

surprising amount of time-dependence.

Looks like measure of epistasis: influence of given

mutational background on fitness of newly acquired

mutations.
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Summary

• Persistent homology detects evolutionarily relevant phenomena

• topological Recurrence Index (tRI) detects adaptive mutations (among others)

• tRI computations are efficient

• tRI curves might allow study of epistasis

• Differentiation of beneficial and adversarial mutations must rely on experiments, but persitent

homology can tell us where to look

Thank you!
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