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Gene Expression

Cell nucleus Cell cytoplasm

Transcription
Translation Y 2 4R
O, - £ an m ‘
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Population Dynamics

La Manno, G. et al. (2018) ‘RNA velocity of single cells’,
Nature, 560(7719), pp. 494-498. Fig 2.

Model schematic
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Danciu, D.-P. et al. (2023) ‘Mathematics of neural stem
cells: Linking data and processes’, Cells & Development,
174, p. 203849. Fig 1 & Fig 5A.
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"Standard” RNA velocity

Transcription

Messenger RNA transcript (MRNA)

!

Messenger RNA processing (MRNA)

!

Processed messenger RNA (mRNA)

Nucleopore

La Manno, G. et al. (2018) ‘RNA velocity of single cells’,
Nature, 560(7719), pp. 494-498. Fig 1.
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Steady state

A Induction =
us>ys =1

Unspliced (u)

Repression
u<ys

Spliced (s)

~ v; € RN RNA velocity
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"Standard” Visualizations

Given RNA-velocity data

(aci,vi) € ]RN X RN

1. get low dimensional representation
2
T = Y; € R
2. "pushforward” of velocities v; — w; € R? st.

Similarity (v, x; — ;) ~ Similarity (w;, y; — ys)

La Manno, G. et al. (2018) 'RNA velocity of single cells’,

Nature, 560(7719), pp. 494-498. Fig 2.
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Common Criticism of "standard” approach d . .
L. . coordinates  manifold geomet s(x)
RNA velocities v; are not tangent to data manifold. — x e
formulation p p \'.'
s(x) _°ff" \/L\_\% $
Manifold Constrained RNA Velocity » ‘ N
. 1 velocity interlocked velocity-learning
1. Choose cell-state manifold M (e.qg. M = S") velociy i3 Lot I
. formulation [ N ‘%Q/Q S o
2. Assume gene expressions depend only on M u(x, B, v, VO) ::;:& PUSCI 1 -
—— g e
3. compute representation of scRNA-seq data in M A Gty Gk
(think: coordinization z(y), s(y), u(y)) (Vi) - V(D) = Byrtg (x(0)) — ¥g5, (x(2))

4. infer RNA velocity in low-dimensional representation Lsdlerer AR vl (£094) Grstiatiesl ineranas

5. (optional) pull velocities back to RY for with a manifold-constrained RNA velocity model
downstream analysis uncovers cell cycle speed modulations’.

Successfully tested for cell cycle. RNA velocities generally point in the expected direction (and
show interesting speed modulations).
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Taking a step back

"Standard” position and velocity pairs are points in tan-
gent bundle (aka phase space)

(z;,v;) € RN x RN = TRY

1. Manifold assumption

Data is noisy sample from 7'M — TRY
~ low-dim representations in tangent bundles

2. "Geometric Dynamics” assumption

Time evolution is determined by flow on T M
~+ can flows in dimensionally reduced representation
capture principal dynamical components?

System Phase Portrait
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i Velocity

Note: This kind of data is ubiquitous

® Meteorology (pressure and wind
velocity)

e Astronomy (space velocity of stars)

® Velocity Obstacle Problem in robotic
motion planning

e Traffic Flow Dynamics
(often includes acceleration
~ (24,4, a;) € J2M second Jet bundle)

Geometry
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The Sasaki Metric
(M, g) — Riemannian manifold.

Naturally induced Sasaki Metric on T'M
3 2-parameter family of natural metrics

JSasaki = 9D g : T(TM) ~ TM & TM —R

horizontal  vertical

Examples
e Euclidean space M = RY, TM = RN, ggasaki = gren
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e Poincaré disk

Geometry
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Choice of Latent Space

e trees fit into Hyperbolic spaces (x < 0)
e grids fit into Euclidean spaces (x = 0)

e cycles fit into Spheres (k > 0)

Idea

Provide several components M = My x ... x M, with different curvature to make data feel at
home. E.g. Symmetric Spaces ~» decompose into M = M,<o X R™ x M,;>o.
(also simplifies a bunch of other things)

Intuition
Good approximation of main geometric content of the data; denoising of irrelevant curvature.
E.g. with metric MDS ~ principal curved coordinate analysis

Low-dimensional representation with interpretable geometry, can use geometric tools.

Geometry
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Hamiltonian Single Cell Dynamics ...
Time evolution of a point p = (z,v) € TM is determined by a Hamiltonian flow

Here H is some Hamiltonian (=~ energy) and X is the associated Hamiltonian vector field

defined by
w(XH, ) =dH

Example
® H(z,v) = 1g(v,v) ~ Geodesic Flow
® H(z,v) =V (x)~ Waddington's landscape

@i
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... and Magnetic Systems

Hamiltonian dynamics depends on choice of symplec-
tic structure

e standard symplectic structure on T* M

wo = dp A dq

¢ deformation by magnetic field u € Q2(M)

\ N\ /

K‘P Bi=(%,%)
=9\

w=wy+7"Uu

Magnetic fields can lead to motion on cycles
~» model for cell cycle?
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Summary

e RNA velocity embeddings into Sasakian
Geometry

e Principal curved coordinate analysis

® Hamiltonian and Magnetic Systems on
principal curved coordinates

e many other concepts and ideas from
differential geometry can be explored

single cell dynamics
To

population dynamics

quiescent NSC (Q) active NSC (A)
.' :
activation
p ¢dw\smn
2b 2(1-b)
=

self-renewal & return

to quiescence differentiation
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Summary
single cell dynamics
To
e RNA velocity embeddings into Sasakian o y&y J
Geometry E s"‘ ZJ
e Principal curved coordinate analysis ~
e Hamiltonian and Magnetic Systems on \
principal curved coordinates population dynamics
e many other concepts and ideas from quiescentNSC (@) aclive NSC ()
differential geometry can be explored . acivaton |
2b 2(—1>-b)

Self-renewal & return
to quiescence differentiation

Thank you!
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