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Gene Expression

From code to function

• DNA → mRNA → proteins

• gene expression

' # mRNA snippets

• proxy for cell’s current

biological state xi ∈ RN
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Population Dynamics

La Manno, G. et al. (2018) ‘RNA velocity of single cells’,

Nature, 560(7719), pp. 494–498. Fig 2.

Danciu, D.-P. et al. (2023) ‘Mathematics of neural stem

cells: Linking data and processes’, Cells & Development,

174, p. 203849. Fig 1 & Fig 5A.
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”Standard” RNA velocity
La Manno, G. et al. (2018) ‘RNA velocity of single cells’,

Nature, 560(7719), pp. 494–498. Fig 1.

 vi ∈ RN RNA velocity
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”Standard” Visualizations

Given RNA-velocity data

(xi, vi) ∈ RN × RN

1. get low dimensional representation

xi 7→ yi ∈ R2

2. ”pushforward” of velocities vi 7→ wi ∈ R2 st.

Similarity(vi, xj − xi) ' Similarity(wi, yj − yi) La Manno, G. et al. (2018) ‘RNA velocity of single cells’,

Nature, 560(7719), pp. 494–498. Fig 2.
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Common Criticism of ”standard” approach

RNA velocities vi are not tangent to data manifold.

Manifold Constrained RNA Velocity

1. Choose cell-state manifold M (e.g. M = S1)

2. Assume gene expressions depend only on M

3. compute representation of scRNA-seq data in M

(think: coordinization x(y), s(y), u(y))

4. infer RNA velocity in low-dimensional representation

5. (optional) pull velocities back to RN for

downstream analysis

Lederer, A.R. et al. (2024) ‘Statistical inference

with amanifold-constrained RNA velocitymodel

uncovers cell cycle speed modulations’.

Successfully tested for cell cycle. RNA velocities generally point in the expected direction (and

show interesting speed modulations).
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Taking a step back

”Standard” position and velocity pairs are points in tan-

gent bundle (aka phase space)

(xi, vi) ∈ RN × RN = TRN

1. Manifold assumption

Data is noisy sample from TM ↪→ TRN

 low-dim representations in tangent bundles

2. ”Geometric Dynamics” assumption

Time evolution is determined by flow on TM

 can flows in dimensionally reduced representation

capture principal dynamical components?

Note: This kind of data is ubiquitous

• Meteorology (pressure and wind

velocity)

• Astronomy (space velocity of stars)

• Velocity Obstacle Problem in robotic

motion planning

• Traffic Flow Dynamics

(often includes acceleration

 (xi, vi, ai) ∈ J2M second Jet bundle)
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The Sasaki Metric
(M, g) – Riemannian manifold.

Naturally induced Sasaki Metric on TM

∃ 2-parameter family of natural metrics

gSasaki = g ⊕ g : T (TM) ' TM︸︷︷︸
horizontal

⊕ TM︸︷︷︸
vertical

→ R

Examples

• Euclidean space M = RN , TM = R2N , gSasaki = gR2N

• Poincaré disk
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Choice of Latent Space

• trees fit into Hyperbolic spaces (κ < 0)
• grids fit into Euclidean spaces (κ = 0)
• cycles fit into Spheres (κ > 0)

Idea

Provide several components M = M0 × . . . × Mk with different curvature to make data feel at

home. E.g. Symmetric Spaces decompose into M = Mκ≤0 × Rn × Mκ≥0.

(also simplifies a bunch of other things)

Intuition

Good approximation of main geometric content of the data; denoising of irrelevant curvature.

E.g. with metric MDS ' principal curved coordinate analysis

Low-dimensional representation with interpretable geometry, can use geometric tools.
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Hamiltonian Single Cell Dynamics ...

Time evolution of a point p = (x, v) ∈ TM is determined by a Hamiltonian flow

γ̇ = XH , γ(0) = p

Here H is some Hamiltonian (' energy) and XH is the associated Hamiltonian vector field

defined by

ω(XH , ·) = dH

Example
• H(x, v) = 1

2 g(v, v) Geodesic Flow

• H(x, v) = V (x) Waddington’s landscape
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... and Magnetic Systems

Hamiltonian dynamics depends on choice of symplec-

tic structure

• standard symplectic structure on T ∗M

ω0 = dp ∧ dq

• deformation by magnetic field µ ∈ Ω2(M)

ω = ω0 + π∗µ

Magnetic fields can lead tomotion on cycles

 model for cell cycle?

Principal Dynamics Analysis 11/12



RNA Velocity Embeddings in Curved Spaces Michael Bleher

Summary

• RNA velocity embeddings into Sasakian

Geometry

• Principal curved coordinate analysis

• Hamiltonian and Magnetic Systems on

principal curved coordinates

• many other concepts and ideas from

differential geometry can be explored

Thank you!
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