

Michael Bleher

Institute for Mathematics, Heidelberg University

– 12 DECEMBER 2024, MPI-MCG –

PERSISTENCE AND COARSE-GRAINING IN DYNAMICAL BIOLOGICAL SYSTEMS

A VISION FOR RESEARCH AT MPI-MCG

>seq0|date|location >seq3|date|location ATGAAGAGCTTAGTCCTAG ATGAAGAGCTTAGTCGTAG >seq1|date|location >seq4|date|location ATGAAGAGCTTTGTCCTAG ATGAAGCGCTTTGTCGTAG

>seq0|date|location >seq3|date|location ATGAAGAGCTTAGTCCTAG ATGAAGAGCTTAGTCGTAG >seq1|date|location >seq4|date|location ATGAAGAGCTTTGTCCTAG ATGAAGCGCTTTGTCGTAG

Transmission modulates observed mutation frequencies

- not every mutation is beneficial
- wide-spread mutations are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to appear repeatedly (and may then spread more widely)

>seq0|date|location >seq3|date|location ATGAAGAGCTTAGTCCTAG ATGAAGAGCTTAGTCGTAG >seq1|date|location >seq4|date|location ATGAAGAGCTTTGTCCTAG ATGAAGCGCTTTGTCGTAG

Transmission modulates observed mutation frequencies

- not every mutation is beneficial
- wide-spread mutations are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to appear repeatedly (and may then spread more widely)

Recurrence is a hallmark of increased fitness.

>seq0 >seq3 ..A..C.. ..A..G.. >seq1 >seq4 $T \cdot .C \cdot .$ $T \cdot .G \cdot .$

Transmission modulates observed mutation frequencies

- not every mutation is beneficial
- wide-spread mutations are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to appear repeatedly (and may then spread more widely)

Recurrence is a hallmark of increased fitness.

Transmission modulates observed mutation frequencies

- not every mutation is beneficial
- wide-spread mutations are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to appear repeatedly (and may then spread more widely)

Recurrence is a hallmark of increased fitness.

>seq0 >seq3 ..A..C.. ..A..G.. >seq1 >seq4 ...T..C.. ...T...G... Hamming distance −→ AC $TC \longrightarrow TG$ AG 1 2

Transmission modulates observed mutation frequencies

- not every mutation is beneficial
- wide-spread mutations are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to appear repeatedly (and may then spread more widely)

Recurrence is a hallmark of increased fitness.

Transmission modulates observed mutation frequencies

- not every mutation is beneficial
- wide-spread mutations are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to appear repeatedly (and may then spread more widely)

Recurrence is a hallmark of increased fitness.

Topological Recurrence Index (tRI) MAB, Lukas Hahn, Maximilian Neumann, Juan Angel Patines (2106.07292
Mathieu Carriere Lillrich Rauge Raul Rahardan Angeles City

M.B., Lukas Hahn, Maximilian Neumann, Juan Angel Patino-Galindo, Mathieu Carriere, Ulrich Bauer, Raul Rabadan, Andreas Ott.

Def.

The **topological Recurrence Index (tRI)** of a mutation is the number of $[1, d)$ -cycles in which it appears.

■ tRI counts small scale recurrence

- rare events
- non-homologous \implies independent acquicistion
- either high mutation rate or fitness advantage

arxiv: 2207.03394

Topological Recurrence Index (tRI)

Data include time series information

 \rightarrow 2-parameter persistence All tRI counts appear in 1d subfiltration.

"Thm"

For any multi-filtered flag complex, get 1d submodules from a deformed metric.

Multiparameter persistence via Rips Transformations (**MuRiT**)

Ripser "Add-on":

- distance matrix
- pointwise poset filtration
- discrete path in product poset
- −→ 1d persistence submodule

Maximilian Neumann, M.B., Lukas Hahn, Samuel Braun, Holger Obermaier, Mehmet Soysal, René Caspart, Andreas Ott.

Topological Recurrence Index (tRI) experience the example of the computation Neumann, Andreas Otto

Data include time series information

 \rightarrow 2-parameter persistence All tRI counts appear in 1d subfiltration.

"Thm"

For any multi-filtered flag complex, get 1d submodules from a deformed metric. → 19 mm

Ferrany multi-filtered flag complex, get

distance from a deformed metric.

 a Rips Transformations (MuRiT)

 e distance matrix

• distance matrix

• pointwise poset filtration

• discrete path in product

Multiparameter persistence via Rips Transformations (**MuRiT**)

Ripser "Add-on":

- distance matrix
- pointwise poset filtration
- discrete path in product poset
-

Zachary Ardern, M.B., Maximilian Neumann, Andreas Ott.

Spike gene amino acid site W ning: non-synonymous mutations $U(\mathcal{X})$ only, color scheme adapted, window size 1011 time

on-going M.B., Fred Hamprecht,

Anna Marciniak-Czochra, Anna Wienhard.

Single Cell Dynamics – a geometer's perspective

Cell nucleus Cell cytoplasm Transcription Translation RNA polymerase RNA transcript (mRNA RNA processing (mRNA) messenger RNA (mRNA) Messenger RNA (mRNA) Nucleopore Outside cell

• gene expression $=$ # mRNA

- proxy for cell's current biological state $x_i \in \mathbb{R}^{\# \text{genes}}$
- RNA velocity = rate of change in $#$ mRNA
- proxy for cell's current development direction $v_i \in \mathbb{R}^{\# \text{genes}}$

Epigenetic Landscape

Single Cell Dynamics – a geometer's perspective

Time evolution of individual points $p_i = (x_i, v_i) \in TM$ follows a Hamiltonian flow

$$
\dot{\gamma} = X_H , \ \gamma(0) = p
$$

Here *H* is some Hamiltonian (\simeq energy) and X_H is the associated Hamiltonian vector field defined by

$$
\omega(X_H, \cdot) = dH
$$

Key Property

Model complex dynamics with few parameters.

Examples

- $H(x, v) = \frac{1}{2} ||v||^2 \rightsquigarrow$ Geodesics (shortest paths)
- $H(x, v) = V(x) \rightarrow$ Epigenetic Landscape

on-going M.B., Fred Hamprecht, Anna Marciniak-Czochra, Anna Wienhard.

Single Cell Dynamics – a geometer's perspective

Challenges

- High-dimensional data ($#$ genes)
- Noise, batch effects
- destructive sampling

Manifold Learning

Hypothesis: Processes take place on lowdimensional submanifold.

Goal: "Effective Hamiltonian Dynamics"

Investigate development and disease through latent space models of differentiation.

Python Package: **gNE**

(geometric Neighbour Embeddings)

RNA velocity embeddings in low-dimensions

on-going M.B., Fred Hamprecht,

Anna Marciniak-Czochra, Anna Wienhard.

on-going M.B., Diana-Patricia Danciu, Carolin Lindow, Anna Marciniak-Czochra, Ana Martin-Vilalba.

Zebrafish Embryogenesis (notochord)

Saunders, L.M., Srivatsan, S.R., Duran, M. et al. *Nature* 623, 782–791 (2023).

Mouse Neurogenesis (quasi-stationary)

on-going M.B., Diana-Patricia Danciu, Carolin Lindow, Anna Marciniak-Czochra, Ana Martin-Vilalba.

Mouse Neurogenesis (quasi-stationary)

Population Dynamics

Q: quiescent *A*: active *D*: differentiated

$$
\begin{array}{l} \frac{d}{dt}Q = -rQ + sA \\ \frac{d}{dt}A = rQ - 2dA \\ \frac{d}{dt}D = dA \end{array}
$$

on-going M.B., Diana-Patricia Danciu, Carolin Lindow, Anna Marciniak-Czochra, Ana Martin-Vilalba.

on-going M.B., Diana-Patricia Danciu, Carolin Lindow, Anna Marciniak-Czochra, Ana Martin-Vilalba.

Mouse Neurogenesis (quasi-stationary)

From single cells to population dynamics?

Describe position probability of individual cells by continuous time Markov chain

$$
\frac{d}{dt}p_i(t) = \sum_j H_{ij}p_j(t)
$$

Deduce transition probabilities H_{ij} from data.

Population Dynamics

Q: quiescent *A*: active *D*: differentiated

$$
\frac{\frac{d}{dt}Q = -rQ + sA}{\frac{d}{dt}A = rQ - 2dA}
$$

$$
\frac{\frac{d}{dt}D = dA
$$

Renormalization, aka Coarse-Graining

Ising model: $s_i \in \{-1, 1\}$, $J_{ij} \in \mathbb{R}$

$$
E(J) = \sum_{\langle i,j \rangle} J_{ij} s_i s_j
$$

Renormalization, aka Coarse-Graining

 $\text{Ising model: } s_i \in \{-1, 1\}, J_{ij} \in \mathbb{R}, s'_I \in \{-1, 0, 1\}$

$$
E(J) = \sum_{\langle i,j \rangle} J_{ij} s_i s_j \stackrel{s'_I = \frac{1}{|I|} \sum_{i \in I} s_I}{\Longrightarrow} E'(J') = \sum_{\langle I,J \rangle} J'_{IJ} s'_I s'_J.
$$

Renormalization, aka Coarse-Graining

Continuous time Markov chain: $p_i \in [0, 1]$, $H_{ij} \in \mathbb{R}$

$$
\frac{d}{dt}p_i(t) = \sum_j H_{ij}p_j(t)
$$

Renormalization, aka Coarse-Graining

Continuous time Markov chain: $p_i \in [0, 1]$, $H_{ij} \in \mathbb{R}$

$$
\frac{d}{dt}p_i(t) = \sum_j H_{ij}p_j(t) \implies \frac{d}{dt}p_I(t) = \sum_J H'_{IJ}p_J(t)
$$

Renormalization, aka Coarse-Graining

Continuous time Markov chain: $p_i \in [0, 1]$, $H_{ii} \in \mathbb{R}$

$$
\frac{d}{dt}p_i(t) = \sum_j H_{ij}p_j(t) \implies \frac{d}{dt}p_I(t) = \sum_J H'_{IJ}p_J(t)
$$

Persistence and coarse-graining in dynamical biological systems?

Small scale diffusion-drift model of scRNA-seq

Large scale population models of bulk RNA-seq

Renormalization, aka Coarse-Graining

Continuous time Markov chain: $p_i \in [0, 1]$, $H_{ii} \in \mathbb{R}$

$$
\frac{d}{dt}p_i(t) = \sum_j H_{ij}p_j(t) \implies \frac{d}{dt}p_I(t) = \sum_J H'_{IJ}p_J(t)
$$

Persistence and coarse-graining in dynamical biological systems?

Small scale diffusion-drift model of scRNA-seq TDA, ML Effective Dynamics e.g. continuous time Markov chain RG **Large scale** population models of bulk RNA-seq

> persistence tracks topological features across scales renormalization tracks dynamical features across scales

