

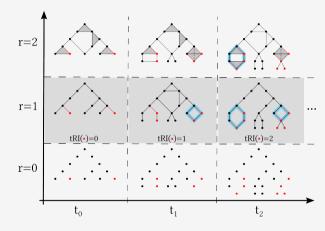
### **Michael Bleher**

Institute for Mathematics, Heidelberg University

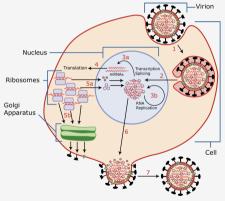
4TH WORKSHOP ON COMPUTATIONAL PERSISTENCE, GRAZ 2024

# **FAST COMPUTATION OF PATHWISE PERSISTENCE**

IN PANDEMIC-SCALE SARS-COV-2 GENOME DATA


based on arXiv:2106.07292 arXiv:2207.03394 & ongoing work

Joint w/


Andreas Ott, Maximilian Neumann (Karlsruhe) Lukas Hahn (Heidelberg) Juan Patiño-Galindo (Mount Sinai) Mathieu Carrière (Inria Sophia-Antopolis) Raul Rabadan (Columbia)

Ulrich Bauer (Munich)

Samuel Braun, Holger Obermaier, Mehmet Soysal, René Caspart (Karlsruhe)



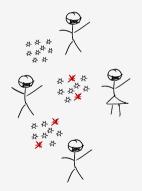
# A Brief Introduction to Genomics and Epidemiology



Author: YK Times, Wikimedia Commons (CC BY-SA 3.0)

### Viral Genome

Encodes instructions for host cell. Sequence of nucleotides A, C, T, G. >seq-id|date|location ATGAAGAGCTTAGTCCTAG

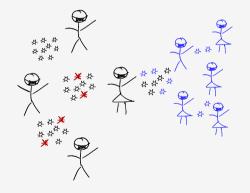

### Viral Life Cycle

- 1. Virus binds to host cell
- 2. Viral genome enters cell & nucleus
- 3. Replication and Transcription of viral RNA
- 4. Translation (production of viral proteins)
- 5. & 6. Assembly
  - 7. Release

# A Brief Introduction to Genomics and Epidemiology

### Transmission modulates frequencies

• not every mutation is beneficial

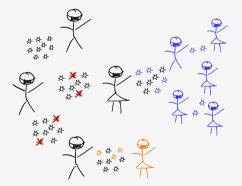



#### Michael Bleher

# A Brief Introduction to Genomics and Epidemiology

### **Transmission modulates frequencies**

- not every mutation is beneficial
- mutations that spread widely are not necessarily beneficial (founder effects)



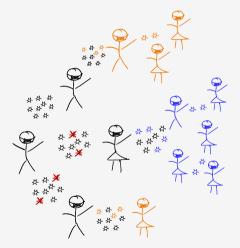

#### Michael Bleher

# A Brief Introduction to Genomics and Epidemiology

### **Transmission modulates frequencies**

- not every mutation is beneficial
- mutations that spread widely are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on




# A Brief Introduction to Genomics and Epidemiology

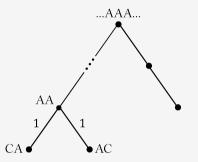
### Transmission modulates frequencies

- not every mutation is beneficial
- mutations that spread widely are not necessarily beneficial (founder effects)
- not every beneficial mutation catches on
- BUT: beneficial mutations tend to appear repeatedly (and may then spread more widely)

#### Recurrence is a hallmark of increased fitness.

Example: evolution of wings (birds, bats, insects)




# Geometry of Viral Evolution

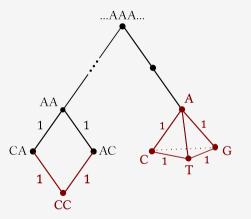
Monitor evolution of virus and determine influence of (single or groups of) mutations on its fitness.

Construct **phylogenetic tree** from sequences.

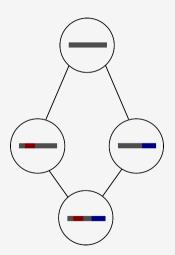
Hamming distance = Tree distance

Minimum spanning tree reconstructs ancestral relations




# Geometry of Viral Evolution

Monitor evolution of virus and determine influence of (single or groups of) mutations on its fitness.


Construct phylogenetic network from sequences.

Hamming distance  $\neq$  Tree distance

Minimum spanning tree reconstructs ancestral relations, but is not unique.



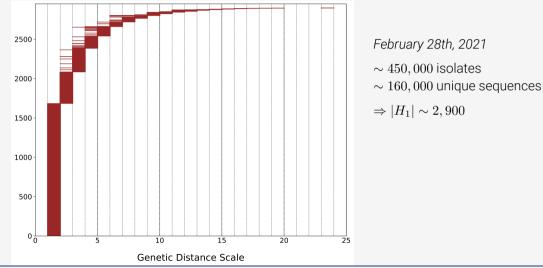
# **Topology of Viral Evolution**



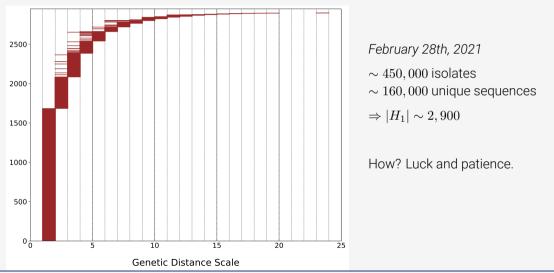
#### Reassortment

Some viruses have disconnected genome, e.g. Flu (HxNy). Co-infection can lead to "reassortment" during assembly.

### Recombination


Replication apparatus can switch RNA template. Co-infection can lead to recombination into a hybrid genome.

#### Convergence


independent emergence of similar traits.

 $\Rightarrow$  cycles in phylogenetic network at different scales.

# Persistent Homology of SARS-CoV-2



# Persistent Homology of SARS-CoV-2



# Signal or Noise?

### Back-of-the-envelope

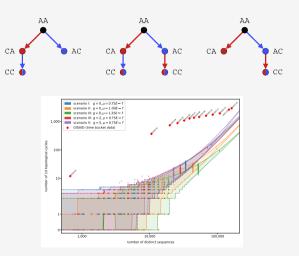
$$\begin{split} p &\simeq 2/30,000 \simeq \mathcal{O}(10^{-4}) \\ \# \text{unique sequences} &= \mathcal{O}(10^6) \end{split}$$

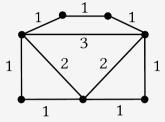
 $\Rightarrow$  expect  $\mathcal{O}(100)$  cycles are noise



# Signal or Noise?

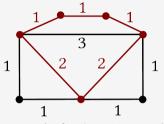
### Back-of-the-envelope


$$\begin{split} p &\simeq 2/30,000 \simeq \mathcal{O}(10^{-4}) \\ \# \text{unique sequences} &= \mathcal{O}(10^6) \end{split}$$


 $\Rightarrow$  expect  $\mathcal{O}(100)$  cycles are noise

### Simulations of neutral evolution

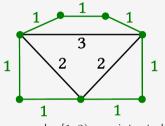
- uniform mutation probability
- no fitness advantages
- no recombinations


 $\Rightarrow$  expect 350-400 (at worst: 1,200 ~ 50%)





example: [1,3)-persistent class

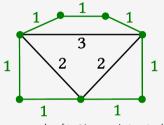

Which mutations are responsible for homology?



example: [1,3)-persistent class

### Which mutations are responsible for homology?

use cycle representatives




### example: [1,3)-persistent class

### Which mutations are responsible for homology?

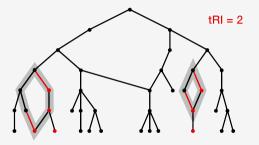
use cycle representatives from **exhaustive** reduction

Every edge of length 1 corresponds to a unique single neucleotide variation (SNV).



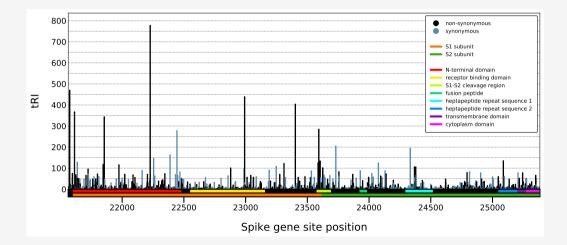
### Which mutations are responsible for homology?

use cycle representatives from **exhaustive** reduction

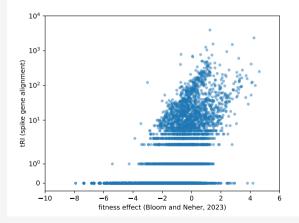

example: [1,3)-persistent class

Every edge of length 1 corresponds to a unique single neucleotide variation (SNV).

**SNV-cycles** := Exhaustive representatives of [1, d) classes

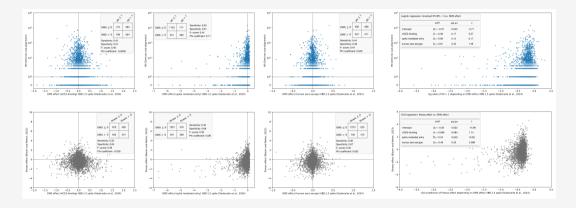

- $Z_{\rm SNV}$  set of all SNV-cycles in  $H_1$ 
  - μ mutation of interest (notation: RefPosAlt, e.g. D614G)

 $\mathrm{tRI}(\mu) := \#\{\gamma \in Z_{\mathrm{SNV}} \mid \mu \in \gamma\}$ 




### ⇒ tRI is a measure for convergence (and thus fitness)

## **Topological Recurrence of Spike mutations**




### **Comparison with Established Fitness Measures**

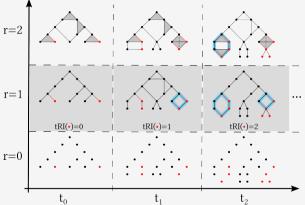


tRI is correlated with tree-based fitness index (Bloom & Neher, 2022)

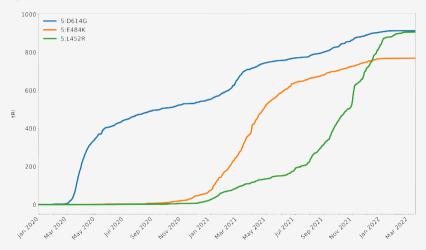
## **Comparison with Established Fitness Measures**



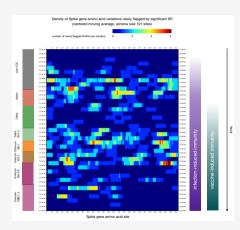
### tRI is correlated with experimental measures of fitness increase.


# Time, Multipersistence, and a Computational Trick

Include time series information


ightarrow 2-parameter persistence

**Good News:** Get all SNV-cycles from restriction to 1d subfiltration ( $mathbb{m} r = 1$ ).


Trick: Equivalent to deformation of metric → Ripser "Add-on": MuRiT Multipersistence through Rips Transformations r= calculates pathwise persistence from distance matrix + additional filtration



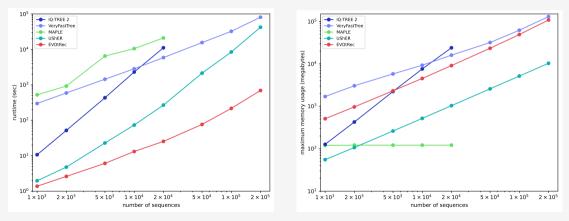
# EvotRec.py - Evolution of topological Recurrence



# **Dynamic Fitness Landscape and Epistasis**

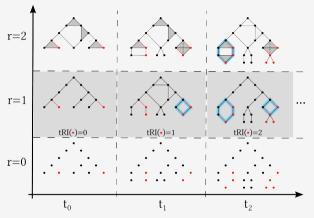


time-resolved tRI activity along the genome shows surprising amount of time-dependence.


Looks like tRI measures *epistasis*: influence of current mutational background on fitness of newly acquired mutations.

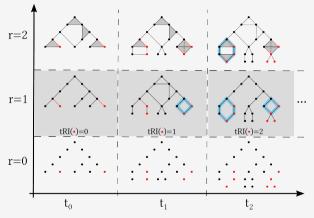
This is possible because SNV-cycles are *localized* in a particular genetic background.

# **Computational Benchmarks**


Runtime






# Summary

- Persistent homology measures evolutionarily relevant phenomena
- topological Recurrence Index (tRI) is sensitive to fitness effects
- EvotRec computations are fast and efficient
- tRI activity might allow study of epistasis
- Differentiation between beneficial and deleterious mutations must rely on experiments, but persistent homology can tell us where to look



# Summary

- Persistent homology measures evolutionarily relevant phenomena
- topological Recurrence Index (tRI) is sensitive to fitness effects
- EvotRec computations are fast and efficient
- tRI activity might allow study of epistasis
- Differentiation between beneficial and deleterious mutations must rely on experiments, but persistent homology can tell us where to look



Thank you!