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A Brief Introduction to Genomics and Epidemiology

Author: YK Times, Wikimedia Commons (CC BY-SA 3.0)

Viral Genome

Encodes instructions for host cell.

Sequence of nucleotides A, C, T, G.

>seq-id|date|location
ATGAAGAGCTTAGTCCTAG

Viral Life Cycle

1. Virus binds to host cell

2. Viral genome enters cell & nucleus

3. Replication and Transcription of viral RNA

4. Translation (production of viral proteins)

5. & 6. Assembly

7. Release
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A Brief Introduction to Genomics and Epidemiology

Transmission modulates frequencies

• not every mutation is beneficial

• mutations that spread widely are not

necessarily beneficial (founder effects)

• not every beneficial mutation catches on

• BUT: beneficial mutations tend to appear

repeatedly (and may then spread more

widely)

Recurrence is a hallmark of increased fitness.

Example: evolution of wings (birds, bats, insects)
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Geometry of Viral Evolution

Viral genome data X

Goal

Monitor evolution of virus and determine influence of

(single or groups of) mutations on its fitness.

Key idea

Reconstruct phylogenetic tree from sequences

Hamming distance = Tree distance

Minimum spanning tree reconstructs

ancestral relations.

Geometry and Topology of Viral Evolution 4/24
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Hamming Geometry

Σ = finite alphabet

Σn = sequences of length n over Σ

RNA/DNA: Σ = {A, C, T, G}
>seq 0
ATGAAGAGCTTAGTCCTAG
>seq 1
ATGAAGAGCTAAGTCCTAG

Hamming distance

= number of differing positions between two sequences

dH(x, y) := #{i | xi 6= yi}

Hamming Space (Σn, dH)

• Discrete metric space, highly symmetric

• Geodesic (shortest path = sequence of point mutations)
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Geometry of Viral Evolution – Revisited

Viral genome data X

⊂ Σn

Goal

Monitor evolution of virus and determine influence of

(single or groups of) mutations on its fitness.

Key idea

Reconstruct phylogenetic tree from sequences

Hamming distance = Tree distance

Minimum spanning tree reconstructs

ancestral relations

, but is not unique.

Use this to detect interesting phenomena.
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Contractibility Lemma(s)

Rips, Gromov (60’s & 80’s)

(X, d) a δ-hyperbolic geodesic metric space =⇒ VRr(X) is contractible, r ≥ 4δ.

Chan, Carlsson, Rabadan (2013)

If (X, d) is a tree, then Hn(VR•(X, d) ) = 0, n ≥ 1.

Bauer, Roll (2022)

(X, d) a δ-hyperbolic ν-geodesic finite metric space =⇒ ∃ discrete gradient collapse:

VRs(X) ↘ VRr(X) ↘ {∗} , s > r ≥ 4δ + 2ν

=⇒ Persistent homology detects deviations from tree-like data

(and thus evolutionary relevant phenomena!)
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Topology of Viral Evolution

Reassortment

Some viruses have disconnected genome, e.g. Flu (HxNy).

Co-infection can lead to “reassortment” during assembly.

Recombination

Replication apparatus can “switch template”.

Co-infection can lead to recombination into a hybrid genome.

Convergence / Homoplasy

independent emergence of similar traits.

example: evolution of flight (mammals, insects, bats)

=⇒ cycles in phylogenetic network at different

scales.

Geometry and Topology of Viral Evolution 8/24
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Persistent Homology of SARS-CoV-2

Consider genomic data with Ham-

ming distance as finite metric

space (X, dH).

>seq 0
ATGAAGAGCTTAGTCCTAG
>seq 1
ATGAAGAGCTAAGTCCTAG
>seq 2
ATGAACAGCTAAGTCCTAG

dH =

(
0 1 2
1 0 1
2 1 0

)

Construct Vietoris-Rips complex

V R•(X, dH)

Calculate homology

Hk(V R•(X, dH))

The Topological Recurrence Index (tRI) 9/24
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Persistent Homology of SARS-CoV-2

February 28th, 2021

∼ 450, 000 isolates

∼ 160, 000 unique sequences

⇒ |H1| ∼ 2, 900

The Topological Recurrence Index (tRI) 10/24
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Signal or Noise?

Back-of-the-envelope

p ' 1/30, 000 ' O(10−4)
#unique sequences = O(106)

⇒ expect O(100) cycles are noise

Simulations of neutral evolution

• uniform mutation probability

• no fitness advantages

• no recombinations

⇒ expect 350-400

(at worst: 1, 200 ∼ 50%) 1,000 10,000 100,000
number of distinct sequences
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Extracting the Signal: From homology classes to mutations.

example: [1, 3)-persistent class

Which mutations are responsible for homology?

use cycle representatives

from exhaustive reduction

Every edge of length 1 corresponds to a unique single neucleotide variation (SNV).

SNV-cycles := Exhaustive representatives of [1, d) classes

The Topological Recurrence Index (tRI) 12/24
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The topological Recurrence Index (tRI)

ZSNV – set of SNV-cycles in H1
µ – mutation of interest

(notation: RefPosAlt, e.g. A614C)

Definition

tRI(µ) := #{γ ∈ ZSNV | µ ∈ γ}

Proposition

tRI(µ) = minimal number of independent occurences of µ in X .

=⇒ tRI is a measure for convergence

(and thus fitness)

The Topological Recurrence Index (tRI) 13/24
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Topological Recurrence of Spike mutations
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Robustness of tRI

tRI is robust to noise, sequencing errors, and

subsampling.

The Topological Recurrence Index (tRI) 15/24
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Comparison with Fitness in Simulations
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tRI is sensitive to fitness increase
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Comparison with Established Fitness Measures
– Recurrence counts (tree-based, simulations)

Spearman correlation (mean ± 95% CI) between

raw tRI profiles and TreeTime homoplasy counts

Neutral variants


 = 0.04 ± 0.007

p = 0.32 ± 0.06
ρ

Beneficial variants


 = 0.59 ± 0.01

p < 1e-09
ρ

tRI is correlated with tree-based recurrence counts

(HomoplasyFinder, Crispell et al., 2019)
The Topological Recurrence Index (tRI) 17/24
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Comparison with Established Fitness Measures
– Fitness Index (tree-based, SARS-CoV-2)

10 8 6 4 2 0 2 4 6
fitness effect (Bloom and Neher, 2023)
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tRI is correlated with

tree-based fitness index

(Bloom & Neher, 2022)
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Comparison with Established Fitness Measures
– Deep Mutational Scanning (experimental, SARS-CoV-2)

tRI is correlated with experimental measures of fitness increase.

(Starr et al., 2022)

The Topological Recurrence Index (tRI) 19/24



Topological Signatures of Convergence in Viral Evolution Michael Bleher

Time, Multipersistence, and a Computational Trick

Include time series information

→ 2-parameter persistence

Good News: Get all SNV-cycles from restriction

to 1d subfiltration @ r = 1.

Trick: Equivalent to deformation of metric

→ Ripser ”Add-on”: MuRiT
Multipersistence through Rips Transformations

calculates pathwise persistence from

distance matrix + additional filtration

Time, Multipersistence, and a Computational Trick 20/24
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EvotRec.py – Evolution of topological Recurrence

Time, Multipersistence, and a Computational Trick 21/24
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Dynamic Fitness Landscape and Epistasis
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Density of Spike gene amino acid variations newly flagged by significant tRI  
(centered moving average, window size 101 sites)

number of newly flagged SAAVs per window:

Time-resolved tRI activity along the genome shows

surprising amount of time-dependence.

Looks like tRI measures epistasis:

influence of current mutational background on fitness

of newly acquired mutations.

This is possible because SNV-cycles are localized in a

particular genetic background.
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Dynamic Fitness Landscape and Epistasis

Time, Multipersistence, and a Computational Trick 22/24
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Computational Benchmarks

Runtime Memory
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Summary

• Persistent homology measures

evolutionary relevant phenomena

• topological Recurrence Index (tRI) is

sensitive to fitness effects

• EvotRec computations are fast and

efficient

• tRI activity might allow study of epistasis

• Differentiation between beneficial and

deleterious mutations must rely on

experiments, but persistent homology can

tell us where to look

Thank you!
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