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Motivation

Cell population dynamics is crucial in:

• Stem cell biology

• Cancer treatment

• Regenerative medicine

Example: Glioblastoma

Glioblastoma tumours (GBM) arise from neural

stem cell dynamics ’gone wrong’.

Roughly: dysregulated differentiation process.

High ’stemness’ of tumour cells

→ therapy resistance, relapse, poor prognosis.

w/ Ana Martin-Vilalba (DKFZ),

Anna Marciniak-Czochra (Heidelberg)

el Kheir et al., 2022

Wang et al., 2021
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Model System: Neurogenesis in maturating Mice

Sanes et al., 2019

(Main) Cell Types

• Quiescent Neural Stem Cells (Q)

• Active Neural Stem Cells (A)

• Differentiated Cells, e.g. Neurons (D)

Questions

• How do cells transition between

Q ↔ A ↔ D

• How do transitions depend on population

size (signalling), time (aging), external

factors (e.g., inflammation)?

• How do these dynamics change in disease?
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The Population-Level Problem

Problem

Population dynamics not identifiable from data.

Why?

Compartmental models are determined by:

• Graph (compartments + transitions)

• Transition rates between compartments

Manymodels fit the same population data.

(different graphs, rates, non-linearities, ...)

Q: Can single-cell data help?
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Single-cell Gene Expression

From code to function

• DNA → mRNA → proteins

• gene expression

' # mRNA snippets

• proxy for cell’s current

biological state xi ∈ RN
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RNA velocity
La Manno, G. et al. (2018) ‘RNA velocity of single cells’,

Nature, 560(7719), pp. 494–498. Fig 1.

 vi ∈ RN RNA velocity
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Why single-cell data might help

Single-cell level

Continuous-time Markov Chain (CTMC)

(interacting particles / mean field)

d

dt

(
pQ
pA
pD

)
=

(
−λQA λAQ 0
λQA −(λAQ + λAD) λDA

0 λAD −λDA

)(
pQ
pA
pD

)

LLN−→ Population level

Occupation number ODEs

(non-linear in population sizes)

d

dt

(
Q

A

D

)
=

(
−fQA fAQ 0
fQA −(fAQ + fAD) fDA

0 fAD −fDA

)(
Q

A

D

)
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A Hierarchy of Problems

Linking scRNA-seq data to population dynamics requires answering a hierarchy of problems.

1. What compartments/states can individual cells be in?

2. What transitions occur between these states?

For example: can cells move back into (deep) quiescence or do they remain active?

3. What are the rates of these transitions?

4. How do rates depend on population size, time, external factors?

Problems 1 & 2: Graph structure = Topology

Can we differentiate between graphs using single cell information?

Approach: Euler Characteristic Curves.

with Marta Marszweska (Gdansk, Warsaw), Justyna Signerska-Rynkowska (Gdansk), Pawel Dlotko (Warsaw)

Next 20 mins: intro to relevant topological concepts and application to dynamical systems.
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Directed Graphs

A directed graph is a collection of vertices connected

by directed edges.

The Challenge

• For N vertices ≈ 2N2
/N ! directed graphs.

• For 3 compartments (Q, A, D) have 85 possibilities!

Need mathematical tool that distinguishes graph topologies

and that:

• is built from single cell data (many points!),

• captures the underlying Markov chain (few states!),

• is invariant as we go from the first to the second.
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The 3-Utilities Puzzle
The Puzzle

Can you connect the 3 houses to the 3 utilities (water, gas,

electricity) without crossing lines?

Answer: No.

For any graph without crossings in the plane,

χ = V − E + F = 2 Euler’s formula (not obvious)

=⇒ F = 5

But (1) no house-house or utilities-utilities connections

=⇒ every face boundary has length ≥ 4.
And (2) Each edge is in the boundary of exactly two faces.

2E ≥ 4F =⇒ 18 ≥ 20 contradiction.
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The 3-Utilities Puzzle
The Puzzle (revisited)

Can you connect the 3 houses to the 3 utilities (water, gas,

electricity) without crossing lines on a mug?

Answer: Your Turn.
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The Euler Characteristic

For graphs χ = V − E

For polygons χ = V − E + F

In general

For a simplicial complex K :

χ(K) =
n∑

i=0
(−1)i|Ki| = V − E + F − . . .

where Ki is the set of i-simplices in K.

Why is χ useful?

• Captures connectivity

Connected components, cycles, holes.

• Distinguishes structures

Different χ ⇒ different topologies.

• Generalizes

Extends to higher-dimensions.

• Invariant

Preserved under continuous deformations,

e.g. stretching, bending, or contracting

connected components.

• Computable
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From Point Clouds to Graphs, and beyond

What We Have (in principle)

• scRNA-seq: high-dimensional point cloud data

• RNA velocity: estimates of where cells are moving

What We Want

• The underlying graph structure of the Markov chain

on cell states

The Key Question

How do we extract graph topology from point cloud data (with velocity information)?

TDA Approach: Connect points at different scales/for different relevant parameter thresholds.

The Euler Characteristic Profile (ECP) 11/19



Population dynamics, scRNA-seq, and Euler Characteristic Profiles M. Bleher

Bifiltered Complexes from RNA-Velocity

1. Start with kNN-graph of the scRNA-seq data.

2. For each edge (xi, xj), compute edge vector:

~eij = xj − xi.

3. Filtration 1 (ε1):

Cosine distance between ~eij and velocity vi at xi.

4. Filtration 2 (ε2):

Cosine distance between −~eij and velocity vj at xj .

5. Add higher order simplices by standard clique

construction.

xi xj

~eij

vi vj

What this does

If xi is moving toward xj , then vi aligns with ~eij (small ε1).

⇒ Observe connection between xi and xj at small ε1 values.
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The Euler Characteristic Profile (ECP)

Given a point cloud:

e.g., scRNA-seq data with velocity information

1. For each choice of parameters (ε1, ε2, . . . , εk),
2. build a simplicial complex1 Kε1,...,εk

,

3. and compute χ(Kε1,...,εk
) = |V | − |E| + |F | − . . .

The ECP is the function χ : Rk → Z obtained from this.

Intuition

• Multi-parameter filtrations capture topological

information for all parameter choices simultaneously.

• Different network topologies produce different ECPs.

1Need to be included in each other as we increase parameter values.

The Euler Characteristic Profile (ECP) 13/19



Population dynamics, scRNA-seq, and Euler Characteristic Profiles M. Bleher

Challenges and Considerations

Technical Challenges

• Curse of Dimensionality: Noisy vectors are essentially orthogonal.

• Computational cost: 2D parameter space for bifiltration

• Sampling: How many cells are sufficient for reliable ECP estimates?

Fundamental Questions

• Which graph features are topologically distinguishable?

• How do transition rates affect ECP signatures?

• How does noise affect ECP signatures?
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Challenges and Considerations:
Can ECP distinguish between different graphs?

Goal

Systematically understand which topological features ECP can capture.

Create synthetic benchmark

1. Select candidate graph topologies

(e.g., linear chains, cycles, branching structures, graphs with/without specific edges)

2. For each graph: simulate data with known ground truth

3. Build bifiltered complexes (kNN + velocity alignment)

4. Compute ECP for each dataset

5. Use distances between ECPs to run clustering / statistical tests.

6. Assess: which features are distinguishable, which aren’t?
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Synthetic Data: A Markov-Modulated Splicing Model

Generate synthetic u/s-counts of single cells using a two-level dynamics:
• Latent state process:

Continuous-time Markov chain on a state graph

• States z1, . . . , zn with probability pi

• d
dt

pi =
∑

j Qijpj

• Asymmetric transition rates Qij 6= Qji, encode directionality

• Gene expression:

Standard transcription-splicing-degradation process for cell in state z
with state-dependent transcription rate αz

• du
dt

= αz − β · u (transcription + splicing)

• ds
dt

= β · u − γ · s (splicing + degradation)

Output: u/s-counts + current state for each cell at time t.
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Preliminary Results
• 5 simulation runs each from two graphs: one with

M2 → Q2 transition, one without.

• Computed ECP for each dataset.

• Computed pairwise euclidean distances between

flattened ECPs.
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Application Goal: Uncovering Cell State Transitions

The Biological Question

After benchmarking validates the method, we can apply it

to answer:

Consider the (Q, A, D) system:

• Does an A → Q2 transition exist? How about an

A → Q1 transition? Or an M2 → Q1 transition?

• That is: can cells land in (deep) quiescence after

division?
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Current Status and Next Steps

What We Have

• synthetic data for arbitrary graphs

• Bifiltered complex construction (kNN + velocity alignment)

• ECP computation for bifiltrations

Immediate Next Steps

1. Develop benchmarks (standard datasets + scoring)

2. Validate on benchmark: ECP provides meaningful classification/clustering

3. Move beyond classification/clustering; can we recover the ground truth?

Longer-Term Goal

Apply to scRNA-seq data to test biological hypotheses about cell fate transitions and constrain

population-level models.
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